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RECENT PROGRESS IN THE p AND h-p VERSIONS OF THE FINITE ELEMENT METHOD

by
I. Babu~ka

Institute for Physical Science and Technology
University of Maryland, College Park, MD 20742

1. INTRODUCTION

finite element method has become the main tool in computational

mechanics. The success is manifested by the development of over five

hundred user-oriented finite element program systems, ee. The-- 4 T

literature on the subject is overwhelming. To date there are over two

hundred monographs and conference proceedingsE4- and new monographs and

proceedings are continuously appearing. Various forms of the finite element

method are used in practice for the numerical treatment of elliptic,

parabolic, hyperbolic, linear and nonlinear partial differential equations,

integral and integrodifferential equations, etc. Any class of problems has

Its own specific features.' aLnthis paper,-- _J33 A dealswith the class

of partial differential equation of elliptic type. For the sake of

simplicity we -w34 elaborateSon a characteristic model problem and
A

illustrative results and make, only additional comments of more general

nature although the results we-eferr to are general.

2. THE MODEL PROBLEM AND ITS PROPERTIES

We restrict ourself to the most simple model problem. Let a c R2, x *

(x1 ,x2 ) be a bounded (simple connected) domain with the boundary an r r
consisting of simple arcs

r. w (xl - fi,1(t), x2 = fi, 2(t), t E I)

M
where I - (-1,1) and r = U " We will assume that fi, 1  and fi,2i,,1

are analytic functions on I and fi + fl2 2 > Q > 0. The vertices of 9

will be denoted by Ai, i = 1,...,M and the internal angles at Ai by

(di .

Let us be interested in the model problem and its standard (weak

solution):

-Au f on a (2.1)

-o c .- - --
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u =(p on r° - U F (2.2a)
jEQ

au 03 n on r r-r (2.2b)

Here Q is a subset of (1,...,M) = M. For simplicity we assume that

r0 go 0.

The performance of any numerical method strongly depends on the

properties of the (exact) solution of the solved problem especially on its

smoothness. The more information is available, the better method could be

designed.

It is very advantageous to characterize the set of solutions of (2.1),

(2.2) under consideration in the terms of countably normed spaces.
Lt A 2)2 + x2 .

Let A- (xl,i,x2,i) and ri (Xl-Xl,i i Define 0B~x)
M B

- ] ri (x), B - (B ,..-,BM), 0 < Bi < 1, and for any integer k let

M Bi±k

*B±k(x) - ] r 1  (x). Then we let 82(g) - [u E Hl(Q)j
i-1

I0B+k_2DauIL (a) Cdkkl, k - 2,3,... , Ia1 - k, C,d independent of k}.
2 M

If u ( B2(g) then it is analytic on - U Ai and has specific behavior
i=1

in the neighborhood of Ai, i = 1,...,M. In [7] [8] we have proven

Theorem 2.1. Let f be analytic on I, c0 be analytic on rj, j E Q and

continuous F0 , * be analytic on r, j E M- Q. Then for (2.1) and

(2.2) u E 8(g) with Bi > ji; 0i depends on wi and the type of

boundary condition on r I-1 and r i . o

If, for example, M - 5, Q - (1,2,3) we get j, r max(0,1 -

-2 - max:O,1 - ' - max(o,1 - ' ), - maxCo 1 w,

0(o' 2 3i32 4 i

- max(O,1 -
. ).

2w5

Remark 2.1. In [9] we precisely characterized the traces of functions

from 5 (O) and gave full characterization of the sets of f, p and

which guarantee that the solution u of (2.1) (2.2) belongs to 82

Remark 2.2. Theorem 2.1 also holds when the differential equation in (2.1)
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has analytic coefficients on 5 (see [7]).

Remark 2.3. The eigenfunctions of the eigenvalue problem (2.1) (2.2) also

belong to 82(g) (see [10]).

Remark 2.4. Theorem 2.1 also holds for strongly elliptic system of

differential equations as elasticity equations (see [11]).

In practice, e.g. in the field of structural mechanics, the problems of

partial differential equations are characterized by piecewise analytic data

and hence theorem 2.1 is very well suited for the applications.

3. THE FINITE ELEMENT METHOD

There are various different forms of the finite element method. We will

consider here only the basic class of finite element methods (for our model

problem).

Let T - [TI ) be a partition of a into (in general curvilinear)

triangles or quadrilaterals called elements ri . In the case when T is a

triangulation we are making the standard assumptions. For the general case

we refer to (8), [9), [36]. We will formulate here the assertions in the

case of triangulation only although they hold in general. Let H(p,T) -

{u E H(D)Ju' i , Ti E T is a polynomial of degree p) be the finite

element space. If ri is a rectangle, then polynomials are of degree p

in both variables. If the elements are curvilinear, then uli are the

standard "pull-back" polynomials.

Remark 3.1. We have assumed that the degree of polynomials are the same

over all elements. The theory is developed for general case when the

degree p can be different on different elements.

Let Ho(p,T) - H(pT) n H'(O) where H'(9) - (u H1(Q)1u - 0 on r°o

and Ho(p,T) be the restriction of H(p,T) on rO
. We will assume that a

projection operator PO(pT) of function p into Ho(p,T) be given and we

denote P,T - PO(pT)p. A concrete possible form of Po(p,T) will be

given later.

The finite element method consists now in finding uFE - u(p,T) E

H(pT) so that
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1) u(pT) - (PP,T on r0

2) (FE3 . uFE v )dxldx1
1  3X1  ax2  ax 2

S1 *v ds +fJ fv dx1 dx2

holds for any v E Ho(P,T).

We will be interested in the accuracy of the finite element solution

measured in the energy norm. Define e - u - uFE and let

2eP) 12(e )2. j a 2 dx
e(,)E - J'ax' ~ax 2  ) 1  2

be the error measured in the energy norm.

Two kind of operators Po(Tp) can be considered. Let Y c r0  be the

side of the triangle i with endpoints A,B and assume that Y a [-1,1].

A - -1, B - 1. Then VP,T'y - (x) + w(x) where (x) is linear

function on Y such that (p,TIy(+1) - cP(±1) and a) in the case of Hi-

prjcin 1 r,) '- p-i

projection: Fl(-[,p): ¢, a ', w'(x)- I a Z , where Ik arek-0 0

the Legendre polynomials; b) in the case of H-projection P (T,p): w(x)

a k anTk(x), w(x) - k akTk(x), where Tk(x) are the Tchebyschev
k-O Ic=O

polynomials.

As we have seen there is a large freedom in the selection of H(p,T)

namely the degree p and the partition T and in the selection of the

operators Po(T,p). We expect that lelE + 0 if dim Ho(p, ) + -.

It is convenient to distinguish in this context three versions of the

finite element method.

a) The h-version. Here a sequence (family) H(p,Ti) is considered

when p is fixed (usually p - 1,2) and the mesh T i  is successively

refined so that the size h of the elements of T i goes to zero.

b) The p-version. Here the mesh T is kept fixed and p *-

uniformly on selectively.

c) The h-p version. In this version the mesh is simultaneously
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refined and the degree p increased uniformly or selectively.

The h-version of the finite element method is the standard one and

extensive literature is devoted to it. The p-version is a recent

development. The first theoretical paper about the p-version £26] and the

h-p version [6] appeared in 1981 and various results were obtained since

then. Some of them will be mentioned later.

There are many codes, research and commercial utilizing the h-version.

The only commercial code using p and h-p versions is the code PROBE which

was developed recently by NOETIC Technologies, St. Louis £54]. PROBE solves

two dimensional problems of linear elasticity, stationary heat problems and

thermoelasticity problems. The three dimensional extension-of PROBE will be

released in 1988. Three dimensional research code STRIPE was developed by

Swedish Aeronautical Research Institute, see e.g. [1]. These codes have in

addition various features as adaptive approaches, various a-posteriori error

estimation, etc.

4. THE BASIC PROPERTIES OF THE p AND h-p VERSIONS OF THE FINITE ELEMENT

METHOD

After 1980 the p and h-p versions of the finite element method was studied

in detail from various point of view. We will mention here some essential

illustrative results.

In one dimensional setting the versions were analyzed in detail in

£34]. Here, among other, the optimal meshes and p-distribution has been

established with upper and lower bounds of the errors for the three basic

finite element versions.

In two dimensional setting the following theorem is characteristic for

the performance of the h-p version. (For details see [8], £9], [36].)

Theorem 4.1. Let the solution u of the problems (2.1), (2.2) belongs

to the set B(Q). Then there is a sequence of meshes Ti and the

degrees pi such that

3

le1E < C e , >0 (4.1)

where Ni - dim Ho(piTi) is the number of degrees-of-freedom for the h-p

version. 0
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2
In one dimension the rate is Ce . It has been proven in 341] that

2
the optimal mesh is a geometric one with the factor (/r - 1) .17. The

experience shows that the geometric mesh with the factor f .15 is also

optimal in two dimension. Theorem 4.1 together with Theorem 2.1 shows that

practically in any problem of structural mechanics the exponential rate of

convergence can be achieved.

For the p-version the following theorem is another typical one (for more,

see [21), [22], (23), (241).

Theorem 4.2. Let us consider the problem (2.1) (2.2) and let B - max(Bi)

given in Theorem 2.1. Then for the p-version we have

lelE < CN-(-B) (4.2)

while for the h-version with uniformed mesh

lel E > CN . (4.3)
0

In Theorems 4.1 and 4.2 either the projection P0  or PY could be used

provided (p, * are sufficiently smooth. The difference between these two

operators occurs for the p-version when the boundary condition (P is

unsmooth, e.g. cp E H6(r), Y < 6 < 3/4. In this case the H projection

has to be used. For the h-p version there is no difference in the

asymptotic rate but some difference occurs in the constant of the estimates.

For the analysis of the influence of the operator PO on the accuracy we

refer to [12).

Remark 4.1. So far we have assumed that the domain a is bounded.

Nevertheless the exponential rate of convergence (4.1) holds also for the

problem on QC - R2 _ , when f has bounded support. Here the infinite

elements and properly selected shape functions have to be used. For more,

see (15).

Remark 4.2. The h, p aad h-p versions have different aspects with respect

to the pollution problem. In presence of a singular behaviour of the
solution (e.g. in the neighborhood of the entrant corner of the domains)
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the L. error is very large in the element consisting the corner. This

effect disappears in elements which are separated away from the singularity

by few elements. This effect is essential for a proper mesh design in

practical computation. For details we refer to [141.

So far we have dealt with the problem (2.1) and (2.2) of second order.

For the analyses of the finite element solution for the problems of order

2k we refer in the case of the h-p version to [35] and the p-versi "n to

[39] [53]. For the basic analysis of the p-version in 3 dimensions, we

refer to [303 and [311. The eigenvalue problem is, as is well known,

directly related to the "source" problem we addressed earlier. See e.g.

[161 and [171. In the case of- the eigenvalue problem (in our case)

Au- Au

u = 0 on rO 0

au
au 0 on r

The eigenfunctions belong to B2(a) and hence

3

IAAXFEI - C e2

3
lUFECAh ) - u()nE < C e

For more details, see e.g. [101.

5. IMPLEMENTATION AND COMPUTATIONAL COMPLEXITY

There are some essential features of implementation of the p and h-p

versions. See e.g. [56]. The elements are of a hierarchical type which

leads to augmentation (bordering) of the local stiffness matrices when p is

increased. This also allows to change very flexibly the degree of the shape

functions from one element to the other one. The shape elements are (in two

dimensions) of nodal type, side type and internal type and are based (in

PROBE) on the integrals fo the Legendre polynomials. This is important for

numerical stability aspects. The computation (in two dimension) of the

local stiffness matrix on a rectangle requires (when optimally programmed)

O(p 4) operations. The computation of the local stiffness matrices takes

much more effort for the p-version (with high p) that for the h-version and

7



hence the p-version is very well su.,ted for parallel computations. The

sparsity of the global stiffness matrix is also smaller for the p version

than the h-version. Hence, the complexity of the computation for the same

number of degrees-of-freedom is higher for the p-version than the h-

version. Nevertheless, it is essential to relate the achieved accuracy to

the computational effort. For an analysis of the computational complexity

and computer time comparison, we refer to (19] and £20]. The results show

that the h-p version with higher degree p is preferable for solutions

which are not overly unsmooth or have singular behaviour in a-priori known

areas as in the neighborhood of the corners. If the solution is very

unsmooth, e.g. if the coefficients in the differential equations are

uniformly rough, for example, measurable only, then only low accuracy is

practically achievable by any method and h-version with low p is

preferable. In general, for very low accuracies the low order elements are

preferable, for the modest one higher degree elements have to be preferred.

6. THE PROBLEM OF THE MESH DESIGN

One of the most laborious part of the finite element analysis, especially in

three dimensions, is the mesh generation also when sophisticated mesh

generators are used. The use of large elements (possibly of high degrees)

which are describing only the geometry, greatly simplifies the user's work,

also if possibly on expense of the computer time. (It is necessary to

realize that the relation between manpower cost and computation cost is

going steadily up.) The option of a change of the degrees of elements

increases significantly the flexibility of the program and gives the user

effective tool for the quality control. The p and h-p version programs give

such options. It is advantageous therefore to create directly or indirectly

the proper mesh and to achieve then the desired accuracy by an appropriate

choice of the degrees, which can be made, for example, in an adaptive

mode. The goal is to achieve the same combination of the degrees and mesh

refinement which would be obtained for the given accuracy by the h-p version

directly. To achieve this goal two avenues could be followed, the expert

system and the adaptive approach. The expert system, see e.g. £183, [45],

advises the user how to design the mesh and element degrees for the

requested accuracy and provides the user with a mesh generator. The expert

system is interactive, follows the progress of computation, gives the user

8



on his request various desired information for an effective computation and

engineering analysis. The experience (see [18] [19]) is that the cost of

the expert activity for a mesh and degree design is at most 20% of the total

cost.

The adaptive approach (see e.g. [46], [34], Part 3) which is possible to

see as an "automatic" expert system makes various decisions for the users.

Both approaches have some common parts but the concepts are significantly

different. We refer also to [46) for various additional aspects.

7. THE ROBUSTNESS

An effective method has to perform uniformly well for a broad class of input

data. The elasticity problems can be in practice nearly singular as, for

example, in the case of nearly incompressible material, various plate and

shell theories, in the case of thin domains, etc. The h-version suffers in

these cases by the "locking" problem which has to be overcome by various

special approaches as reduced Integration, etc. (see e.g. [28]). Problems

of these types are usually avoided when the p and h-p versions are used.

The convergence rate then (in contrast to the h-versions) is uniform with

respect to the Poisson ratio when higher degrees of elements are used. See

e.g. [49], [50] [64].

8. THE QUALITY CONTROL OF THE SOLUTION

It is essential to have a possibility of a quantitative assessment of the

quality of computed data. For the survey of today's general ideas and

results in this direction, we refer to [41]. In the case of the p and h-p

versions there is relatively easy way for the quality assessment of any data

of the interest by changing the degrees and by an extrapolation procedure.

This approach is very effective because it indicates reliably the errors of

any computed data of interest, the energy norm, value of stresses, stress

intensity factor, etc. See e.g. [1), [8], [36]. [58), [61).

9. THE COMPUTATIONAL AND ENGINEERING EXPERIENCE

Because of the developed commercial code PROBE and research code STRIPE an

extensive experience is already available in the research and industrial

use. For the industrial experience we refer e.g. to [27) where numerical

results are presented. For the research one we refer e.g. to [1], [3], [8],

9



[9], [10], [18], [19], [20], [251, [36], [48], [55], [57], [63]. The

experience shows that the p and h-p versions of the finite element method

has many practical advantages for the engineering computations for linear

elliptic problems.

10. RELATION TO SOME OTHER METHODS

The ideas of the p and h-p versions are related for example to the various

methods used in fluid dynamics as the spectral method and its variation. We

refer e.g. to [43] and references given there. A commercial fluid dynamics

code written by T. Patera is closely related to the idea of h-p version of

the finite element method.

The h-p version of course generates various finite element approaches and

in principle encompasses various diverse approaches, see e.g. [29]. The h-p

version can be naturally also used for solving integral equations, boundary

element method, etc. See e.g. [47], [51], [67].

11. SUMMARY

The p and h-p version of the finite element method is a new development

which gives new possibilities, theoretical and practical for the finite

element method. It Is today reasonably well understood in the case of

elliptic equations, both theoretically and practically. The aim of the

present paper was to give a brief survey of various aspects of the p and h-p

versions of the finite element method for solving elliptic linear problems

and provide the comprehensive references. Nevertheless, many theoretical

and practical aspects of the method for other problems, linear and nonlinear

are still to be resolved as well as the problems of implementation for three

dimensional problems.

In addition we refer to the references [2], [3], [4], [37], [38], [42],

[44], [52), [58), [60], [62], [65), [66] which are directly related to the

subject discussed.
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Institute for Physical Science and Technology of the University of Maryland,
under the general administration of the Director, Institute for Physical
Science and Technology. It has the following goals:

o To conduct research in the mathematical theory and computational
implementation of numerical analysis and related topics, with emphasis
on the numerical treatment of linear and nonlinear differential equa-
tions and problems in linear and nonlinear algebra.

o To help bridge gaps between computational directions in engineering,
physics, etc., and those in the mathematical community.

o To provide a limited consulting service in all areas of numerical
mathematics to the University as a whole, and also to government
agencies and industries in the State of Maryland and the Washington
Metropolitan area.

o To assist with the education of numerical analysts, especially at the
postdoctoral level, in conjunction with the Interdisciplinary Applied
Mathematics Program and the programs of the Mathematics and Computer
Science Departments. This includes active collaboration with govern-
ment agencies such as the National Bureau of Standards.

o To be an international center of study and research for foreign
students in numerical mathematics who are supported by foreign govern-
ments or exchange agencies (Fulbright, etc.)

Further information may be obtained from Professor I. Babuvka, Chairman,
Laboratory for Numerical Analysis, Institute for Physical Science and
Technology, University of Maryland, College Park, Maryland 20742.

M J11, 111 '' 1 
1



Mbq

g/ftEm
gL e


